基于图神经网络的工控网络异常检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省“兴辽英才计划”(XLYC1908019)


Anomaly Detection Algorithm in Industrial Control Network Based on Graph Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    网络异常检测技术成为入侵检测领域的重点研究内容, 但由于目前网络异常检测大多都停留在单点网络异常检测, 对不断更新的联合异常攻击和恶意软件无法做出快速及时的相应. 本文提出了一种基于图神经网络的工控网络异常检测算法, 融合网络节点自身属性以及网络拓扑结构中邻域节点的信息实现对网络异常的检测. 首先, 每个网络节点获取蕴含了连接节点的特征信息以及节点之间交互信息的状态向量; 其次, 每个节点使用不动点理论对网络进行迭代更新; 最后, 根据节点自身信息以及邻域节点信息通过神经网络提取更高层次的特征作为该节点的表示, 最后用聚类进行工控网络节点异常行为检测. 实验结果表明, 本文提出算法在具有较高检测率的同时, 也具有较高的鲁棒性.

    Abstract:

    Network anomaly detection technology has become the focus of research in the field of intrusion detection. However, because most of the current network anomaly detection remains at a single point of network anomaly detection, it cannot respond quickly and timely to joint anomaly attacks and malware that are constantly updated. In this study, a industrial control network anomaly detection algorithm based on graph neural network is proposed, which combines the network node’s own attributes and the information of neighbor nodes in the network topology to realize the network anomaly detection. First, each network node obtains a state vector that contains the feature information of the connected nodes and the interaction information between the nodes. Second, each node uses the fixed point theory to iteratively update the network. Thirdly, according to the node’s own information and neighbor node’s information, extract higher-level features through the neural network as the representation of the node. Finally, clustering is used to detect the abnormal behavior of industrial control network nodes. Experimental results show that the algorithm proposed in this study has high detection rate and high robustness.

    参考文献
    相似文献
    引证文献
引用本文

刘杰,李喜旺.基于图神经网络的工控网络异常检测算法.计算机系统应用,2020,29(12):234-238

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-21
  • 最后修改日期:2020-06-03
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号