初等数学应用题题意理解中的常识库系统构建
作者:
基金项目:

国家自然科学基金(61772012)


Constructing of Commonsense Knowledge Base in Problem Understanding of Elementary Mathematics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    类人计算领域, 题意的机器理解是数学应用题自动求解的难点. 常识性知识的缺失直接影响到题意理解的准确性. 本研究以常识为研究对象, 收集了历年初等数学古典概型的典型案例, 分析了古典概型类应用题的常识特征, 并进行了常识类型划分; 设计了XML结构存储常识性知识, 构建常识库系统实现古典概型常识的分类、表征及存储, 辅助计算机进行题意理解. 通过典型案例的应用, 其结果显示本研究构建的常识库对古典概型应用题的题意正确理解是十分有帮助的.

    Abstract:

    In the field of artificial intelligence, problem understanding has always been one of the most important and difficult problems in the automatic solution of mathematical application problems. In this work, we systematically studied the problem of lacking commonsense knowledge in solving elementary mathematical problems, and constructed a commonsense knowledge base to assist computer in problem understanding. We collected the real and simulated questions of the classical probability for college entrance examination over the years as the research object. On the basis of in-depth analysis of topics, this study put forward the concept of commonsense knowledge definition, analyzed and classified its features, and stored commonsense knowledge with XML tags. On this basis, the commonsense knowledge base was applied in practice. The experimental results indicate that the commonsense knowledge base constructed in this study is very helpful for the automatic solution of classical probabilistic application problems.

    参考文献
    [1] Fujita A, Kameda A, Kawazoe A, et al. Overview of Todai robot project and evaluation framework of its NLP-based problem solving. Proceedings of the 9th International Conference on Language Resources and Evaluation. Reykjavik, Iceland. 2014. 36.
    [2] Brosch T, Tam R. Manifold learning of brain MRIs by deep learning. Proceedings of the 16th International Conference on Medical Image Computing and Computer-Assisted Intervention. Nagoya, Japan. 2013. 633–640.
    [3] Wong WK, Hsu SC, Wu SH, et al. LIM-G: Learner-initiating instruction model based on cognitive knowledge for geometry word problem comprehension. Computers & Education, 2007, 48(4): 582–601
    [4] Kang B, Kulshreshth A, LaViola JJ. Analyticalink: An interactive learning environment for math word problem solving. Proceedings of the 21st International Conference on Intelligent User Interfaces. Sonoma, CA, USA. 2016. 419–430.
    [5] 吴林静, 劳传媛, 刘清堂, 等. 基于依存句法的初等数学分层抽样应用题题意理解. 计算机应用与软件, 2019, 36(5): 126–132, 177
    [6] 周颖, 袁莺, 马玉慧, 等. 小学数学应用题自动解答特征分析及研究路线. 中国电化教育, 2010, (8): 112–116, 120
    [7] 张涛. 小学数学应用题教学专家系统的原型构造研究[硕士学位论文]. 长沙: 湖南师范大学, 2012.
    [8] 钟秀琴, 符红光, 丁盘苹. 基于本体与Prolog的平面几何定理证明. 电子科技大学学报, 2011, 40(3): 429–434
    [9] 朱光菊, 夏幼明. 框架知识表示及推理的研究与实践. 云南大学学报(自然科学版), 2006, 28(S1): 154–157
    [10] 徐天任, 夏幼明, 甘健侯, 等. 用语义网络语言描述知识的表示. 云南师范大学学报(自然科学版), 2003, 23(3): 9–13
    [11] 陆汝钤, 石纯一, 张松懋, 等. 面向Agent的常识知识库. 中国科学(E辑), 2000, 30(5): 453–463
    [12] Davis E. Representations of Commonsense Knowledge. San Francisco: Morgan Kaufman, 2014.
    [13] 李梓. 常识的特征和模型. 计算机应用研究, 1999, (4): 5–6
    [14] Gordon JM, Van Durme B. Reporting bias and knowledge acquisition. Proceedings of the 2013 Workshop on Automated Knowledge Base Construction. San Francisco, CA, USA. 2013. 25–30.
    [15] Gordon JM. Inferential commonsense knowledge from text [Ph. D. thesis]. Rochester, New York: University of Rochester, 2014.
    [16] Angeli G, Manning CD. Naturalli: Natural logic inference for common sense reasoning. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. 2014. 534–545.
    [17] Lenat DB, Guha RV. Building Large Knowledge-based Systems. Reading, MA: Addison-Wesley, 1990.
    [18] Lenat DB. CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM, 1995, 38(11): 33–38. [doi: 10.1145/219717.219745
    [19] 陈群秀. 一个在线义类词库: 词网WordNet. 语言文字应用, 1998, 2: 95–101
    [20] 覃家营. 辅助题意理解的常识库构建研究[硕士学位论文]. 武汉: 华中师范大学, 2017.
    [21] 程阳. 关系数据库管理系统的一种简易的数据存储与查询模块的设计与实现[硕士学位论文]. 武汉: 华中科技大学, 2010.
    [22] 陈施卫. 基于XML的异构数据库数据交换的研究与实现[硕士学位论文]. 成都: 电子科技大学, 2012.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘清堂,杨炜钦,吴林静,贺黎鸣,李晶,马晶晶.初等数学应用题题意理解中的常识库系统构建.计算机系统应用,2020,29(12):72-79

复制
分享
文章指标
  • 点击次数:971
  • 下载次数: 2408
  • HTML阅读次数: 1416
  • 引用次数: 0
历史
  • 收稿日期:2020-05-05
  • 最后修改日期:2020-06-10
  • 在线发布日期: 2020-12-02
文章二维码
您是第11184380位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号