摘要:目标跟踪是机器视觉领域的一个研究热点, 如何提高复杂场景下的跟踪水平是一个挑战性的问题. 以往的研究表明, 如何有效使用特征是实现跟踪的关键. 因此, 提出一种基于通道融合特征的目标跟踪算法. 该方法基于多通道相关滤波框架, 引入特征通道权重, 根据通道对响应值的贡献度调整权重, 从而构建实时特征组合. 该算法能够快速捕捉目标状态变化, 有效跟踪目标. 为了验证算法跟踪的有效性, 我们在公开数据集OTB-2015上测试算法性能, 并与多种跟踪算法进行比较. 实验结果显示, 该算法在跟踪精度、成功率上都取得较好的结果, 整体性能优于对比算法.