基于小波分解的LSTM水质预测模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

烟台市科技计划 (2018YT06130844, 2019YT06130885)


Prediction Model of Water Quality Based on Wavelet Decomposition and LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水是人类和其它生命体所依赖的不可缺少的资源, 建立水质预测模型预测水质状况具有重要的社会经济和生态环保价值. 本文建立了基于小波分解的长短期记忆网络(LSTM)时间序列预测模型(W-LSTM), 运用Daubechies5 (db5)小波将水质数据分解为高频率和低频率信号, 再将这些信号作为LSTM模型的输入, 来训练模型预测水质数据. 利用安徽阜南王家坝流域采集到的4项水质指标(pH值、DO、CODMn、NH3N)对该模型进行训练、验证和测试, 并与传统LSTM神经网络模型的训练和预测结果进行比较. 结果显示所提出的方法在多种评价指标上均优于传统LSTM模型, 表明了该方法具有较高的预测精度和泛化能力, 是一种更有效的模拟预测手段.

    Abstract:

    Water is an indispensable source of human being and other living species, thus it has significant value of social economy and ecosystem to establish water quality prediction model. This study developed a W-LSTM time series model to predict water quality based on wavelet decomposition and LSTM. Daubechies5 (db5) wavelet was used to decompose water quality data series into high frequency and low frequency signals, and these signals were used as the inputs of LSTM model to train the model to predict water quality data. Four water quality indices (pH, DO, CODMn, and NH3N) collected from the Wangjiaba River basin in Funan, Anhui Province, China were used to train, validate, and test the model. The training and prediction results of the model were compared with these results of the traditional LSTM neural network model. The results show that the proposed model is superior to the traditional LSTM model in a variety of evaluation indicators. It is proved that this method has higher prediction accuracy and generalization ability and it is a more effective modeling and prediction approach.

    参考文献
    相似文献
    引证文献
引用本文

孙铭,魏守科,王莹洁,赵金东,袁梅雪.基于小波分解的LSTM水质预测模型.计算机系统应用,2020,29(12):55-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-17
  • 最后修改日期:2020-05-15
  • 录用日期:
  • 在线发布日期: 2020-12-02
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号