基于前后端交互的人脸识别系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61572083);教育部联合基金(6141A02022610);陕西省重点研发计划重点项目(2018ZDXM-GY-047);中央高校团队培育项目(300102248402)


Face Recognition System Based on Front and Back Interaction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的人脸识别系统计算效率低和鲁棒性较差等问题,本文提出了一种基于前后端交互的人脸识别系统,系统包含客户端、数据库以及服务端.首先,在客户端提出了基于GrabCut的人脸兴趣区域(ROI)提取算法.其次,将提取到的ROI传输到服务端,并在服务端使用ResNet网络根据ROI提取人脸特征点.最后,将服务端中提取到的人脸特征点返回给客户端,在客户端将该信息与数据库中预存的特征点进行欧式距离匹配,得到人脸识别结果.实验在CeleA数据集与随机视频上进行测试,结果表明提出的ROI提取算法明显提升了人脸识别的精度和鲁棒性,并且系统的前后端交互结构相较于传统的非交互结构极大地提升了人脸识别的计算效率.

    Abstract:

    Aiming at the problems of low calculation efficiency and poor robustness of the existing face recognition system, this study proposed a face recognition system based on front and back interaction, including client, database, and server. First, a GrabCut-based facial Region Of Interest (ROI) extraction algorithm was proposed for the client end. Second, the extracted ROI is transmitted to the server, and the ResNet network is used on the server to extract facial feature points according to the ROI. Finally, the facial feature points extracted from the server were returned to the client, and the client performs Euclidean distance matching between this information and the feature points that were pre-stored in the database to obtain the face recognition result. The experiments were performed on the CeleA database and random videos, and the results show that the proposed ROI extraction algorithm significantly improves the accuracy and robustness of face recognition. Moreover, compared with the traditional non-interactive structure, the front and back interactive structure of the system greatly improves the computational efficiency of face recognition.

    参考文献
    相似文献
    引证文献
引用本文

侯景严,宋焕生,梁浩翔,贾金明,戴喆.基于前后端交互的人脸识别系统.计算机系统应用,2020,29(10):89-96

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-02-23
  • 最后修改日期:2020-03-27
  • 录用日期:
  • 在线发布日期: 2020-09-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号