基于正交参数优化的LSTM结构变形预测模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFC0808706)


Structure Deformation Prediction Model Based on LSTM and Orthogonal Parameter Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着社会经济的蓬勃发展,地铁、隧道、桥梁等大型建筑的需求也越来越大.通过对结构变形数据的分析与预测,可以判断结构未来的发展趋势,对安全隐患提前预警和采取应急措施,预防灾害的发生.由于变形监测数据通常具有不稳定性和非线性的特点,使得监测数据预测成为结构监测研究中的一个难题.针对结构变形预测模型存在的问题,本文提出了一种基于正交参数优化的长短时记忆网络(LSTM)结构变形预测模型.该模型通过LSTM网络结构获得时间序列的长期记忆,充分挖掘变形数据的内部时间特征;并通过正交试验对LSTM模型的参数进行优化;最后通过实测数据对模型进行验证,实验结果表明,模型预测值与实际监测值吻合较好.通过与WNN、DBN-SVR和GRU模型相比,平均RMSEMAEMAPE分别降低了56.01%、52.94%和52.78%,本文提出的基于正交参数优化的LSTM结构变形预测模型是一种有效的结构沉降方法,为结构安全施工以及运营的安全提供可靠信息,对确保结构安全具有重要意义.

    Abstract:

    With the vigorous development of social economy, the demand for large buildings such as subways, tunnels, and bridges is growing. Through analyzing the structural deformation data, it can judge the future development trend of the structure so that emergency measures can be taken in advance to prevent the occurrence of disasters. Due to the instability and nonlinearity of deformation monitoring data, the prediction of monitoring data has become a problem in structural monitoring researches. Aiming at the problems of structural deformation prediction models, a long and short-term memory network (LSTM) structural deformation prediction model is proposed based on orthogonal parameter optimization. The long-term memory of the time series can be obtained through the LSTM network structure, and the internal time characteristics of the structural deformation data can be fully mined, the parameters of the LSTM model can be optimized through the orthogonal experiment. Finally, the model was verified by measured data. Experimental results show that the predicted value of the model is closed to the actual monitoring value. Compared with the WNN, DBN-SVR, and GRU models, the average RMSE, MAE, and MAPE are reduced by 56.01%, 52.94%, and 52.78%, respectively. The LSTM structural deformation prediction model based on orthogonal parameter optimization proposed in this study is an effective structural settlement method, which provides reliable information for the safe construction and operation of the structure, and is of great significance to ensure the safety of the structure.

    参考文献
    相似文献
    引证文献
引用本文

甘文娟,陈永红,韩静,王亚飞.基于正交参数优化的LSTM结构变形预测模型.计算机系统应用,2020,29(9):212-218

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-02-24
  • 最后修改日期:2020-03-17
  • 录用日期:
  • 在线发布日期: 2020-09-07
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号