改进的基于增强型HOG的行人检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划重点专项(2018YFB1004901);国家自然科学基金(31771224,60702069);浙江省自然科学基金(LY17C090011)


Improved Pedestrian Detection Method Based on Enhanced HOG
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行人检测在人工智能系统、车辆辅助驾驶系统和智能监控等领域具有重要的应用,是当前的研究热点.针对HOG特征不明显、支持向量机(SVM)分类器计算复杂度高,导致识别率低和检测速度慢的问题,本文提出了一种改进的基于增强型HOG的行人检测算法.该算法首先预处理原始图像并提取其HOG特征,然后增强该特征生成增强型HOG,经XGBoost分类器进行行人检测.在INRIA数据集上进行测试,实验结果表明所提算法识别率高达95.49%,有效地提高了行人检测性能.

    Abstract:

    Pedestrian detection is a current research hotspot, which has important applications in the fields of artificial intelligence system, vehicle assistant driving system, and intelligent monitoring. In the process of pedestrian detection based on HOG feature, the HOG feature is not obvious, the SVM classifier has high computational complexity, resulting in low recognition rate and high missed detection rate, this study proposes an improved enhanced HOG feature combined with the eXtreme Gradient Boosting (XGBoost) classifier for pedestrian detection. Firstly, the original image is preprocessed to get saliency map and HOG features. Then, the contrast of HOG features is enhanced and the pedestrian detection analysis is carried out with XGBoost classifier. Tested with the INRIA dataset, the experimental results show that the proposed algorithm has a significant improvement in recognition rate and detection speed.

    参考文献
    相似文献
    引证文献
引用本文

李文书,韩洋,阮梦慧,王志骁.改进的基于增强型HOG的行人检测算法.计算机系统应用,2020,29(10):199-204

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-02-14
  • 最后修改日期:2020-03-13
  • 录用日期:
  • 在线发布日期: 2020-09-30
  • 出版日期: 2020-10-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号