基于改进YOLOv3的人体行为检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

成都市科学技术局项目(2018-YF05-01424-GX)


Human Behavior Detection Based on Improved YOLOv3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人体行为检测中相同行为差异大, 不同行为相似度高, 以及视觉角度、遮挡、不能实时检测等问题, 提出Hierarchical Bilinear-YOLOv3人体行为检测网络. 该网络采用YOLOv3在3个不同尺度上进行预测, 抽取YOLOv3金字塔特征提取网络中特定层作为Hierarchical Bilinear的输入, 捕获特征图的层间局部特征关系, 并在3个不同尺度上进行预测, 最后将YOLOv3和Hierarchical Bilinear两种预测结果融合. 实验结果显示, 改进后的模型相比于原网络仅增加了少量参数, 在保证检测效率的同时提高原算法的检测精度, 并在一定程度上优于当前行为检测算法.

    Abstract:

    This study proposes a neural network named Hierarchical Bilinear-YOLOv3 for human behavior detection due to a large disparity in the same behavior and high resemblance between different behaviors in human behavior detection, as well as problems such as visual angle, occlusion, and incapability of continuous real-time monitoring. YOLOv3 is first designed for prediction on three scales, and certain layers in its feature pyramid networks are used as inputs for Hierarchical Bilinear to capture local feature relationships between layers in the feature maps and predict the results on three scales. The integrated results of both YOLOv3 and Hierarchical Bilinear show that the improved network only adds a few parameters compared to the original one. It improves the detection accuracy of the original algorithm without lowering the detection efficiency and thus is superior to the current behavior detection algorithms.

    参考文献
    相似文献
    引证文献
引用本文

李啸天,黄进,李剑波,杨旭,秦泽宇,付国栋.基于改进YOLOv3的人体行为检测.计算机系统应用,2021,30(6):197-202

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-12-16
  • 最后修改日期:2020-01-14
  • 录用日期:
  • 在线发布日期: 2021-06-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号