基于改进CNN的部队门禁系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51605487)


Force Access Control System Based on Improved CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对部队武器仓库等重要场所的门禁管理方式安全性较低等问题, 设计了基于改进卷积神经网络的门禁系统. 首先对卷积神经网络进行介绍, 引入PSO算法设计优化的卷积神经网络的初始权值以及阈值. 然后对手写数字数据集进行分类实验. 实验结果证明, 基于PSO算法的卷积神经网络改进方案能够使得训练过程收敛速度较快, 损失较小, 效果优于传统卷积神经网络. 在此基础上, 根据部队实际工作情况, 将粒子群算法应用于MTCNN以及孪生ResNet算法, 设计基于改进卷积神经网络的门禁系统, 使得部队重要场所的门禁管理具有更高的安全性和可靠性.

    Abstract:

    The access control management methods for important places such as military weapons warehouses are insufficient in security. In order to solve the defects, we design an access control system based on improved convolutional neural network. This paper first introduces the basic knowledge of convolutional neural networks, then introduces Particle Swarm Optimization (PSO) algorithm to design and optimize initial weights and thresholds of convolutional neural networks. After designing, experiment with the MNIST handwritten digital dataset is carried out. The results demonstrate that the modified convolutional neural network can make the convergence speed faster, and the loss is smaller, so the outcome is obviously better than the traditional convolutional neural network. On this basis, according to the actual working conditions of the troops, PSO is applied in the MTCNN and SIAM-ResNet face detection algorithm, the access control system based on improved convolutional neural network is designed, which makes the access control of important places in the army have higher security and reliability.

    参考文献
    相似文献
    引证文献
引用本文

何伟鑫,邓建球,方轶,丛林虎,李俊达.基于改进CNN的部队门禁系统.计算机系统应用,2020,29(6):126-131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-11-13
  • 最后修改日期:2019-12-09
  • 录用日期:
  • 在线发布日期: 2020-06-12
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号