带机器人制造单元的作业车间调度仿真
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省自然科学基金(2018JM5165); 中央高校基本科研业务费专项资金(310832173701); 西安市科技项目(201805045YD23CG29)


Hybrid Meta-Heuristic Scheme to Solve Robotic Cell Job-Shop Scheduling Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对带有机器人制造单元的作业车间调度优化问题, 在若干加工机器上可以加工具有特定加工工序的若干工件, 并且搬运机器人可以将工件在装卸载站与各加工机器间进行搬运. 在实际生产过程中, 由于不确定性, 特别是带有存货的加工单元, 要求工件的完工时间在一个时间窗内, 而不是一个特定的时间点. 因此针对此情况的作业车间, 考虑到其在求解问题过程中的复杂性和约束性等特点, 研究了在时间窗约束下, 目标值为最小化工件完成时间提前量和延迟量的总权重. 提出了一种将文化基因算法与邻域搜索技术(变邻域下降搜索)相结合的改进元启发式算法, 在求得最优目标值的同时, 可得到最优值的工件加工序列及机器人搬运序列. 通过实验结果表明, 所提出的算法有效且优于传统文化基因算法与遗传算法.

    Abstract:

    To solve the job-shop scheduling optimization problem with robotic cell, several jobs with specific processing operations can be processed on several processing machines, and the handling robot can carry the jobs between the loading/unloading stations and the processing machines. In the real world, due to the uncertainty, especially the processing unit with inventory, the completion time of the job is required in a time window, rather than a specific time point. Therefore, considering the complexity and constraints of the job-shop with robotic cell, the objective is to minimize the total weighted earliness and tardiness. An improved meta-heuristic algorithm is proposed, which combines memetic algorithm with local search technology (variable neighborhood descent). The optimal job processing order and robot handling sequence can be obtained simultaneously. Computational experiments show that the proposed algorithm is more efficient than other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

李晓辉,杨晰,赵毅.带机器人制造单元的作业车间调度仿真.计算机系统应用,2020,29(6):241-246

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-22
  • 最后修改日期:2019-11-20
  • 录用日期:
  • 在线发布日期: 2020-06-12
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号