基于树莓派与神经计算棒的特种车辆检测识别
作者:
基金项目:

上海市临港地区产业专项(RZ2018010201)


Truck Detection Method Based on Raspberry PI and Movidius Neural Computing Stick
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目前随着深度学习技术的不断发展,越来越多的智能化应用应运而生,用于训练和演算的硬件设备通常以GPU为主,在实际部署和使用过程中会产生较高硬件采购成本和用电成本.因此针对现有深度学习系统中成本与算法可用性的平衡问题,本文提出以树莓派与Movidius神经元计算棒为计算平台,通过改进的SSD+MobileNet算法实现对车辆目标进行识别和检测,并在实际环境中对训练的模型进行测试和调优,最终达到满足实际使用的效果,处理速度为平均每秒4帧.通过实验结果表明,在树莓派这样计算能力较弱的平台上,可以通过类似于Movidius神经元计算棒这样的VPU模块来实现算法的加速,在满足实际使用的情况下还可以大幅度降低计算成本.

    Abstract:

    With the rapid development of deep learning technology, more and more intelligent algorithms have been applied. The hardware equipment used for training and calculation is mainly GPU, which will incur high hardware procurement cost and power consumption cost in the actual deployment and use. Therefore, aiming at the high cost of the current deep learning system, this study proposes to use raspberry PI and Movidius neuron computing stick as the computing platform. SSD+MobileNet algorithm is adopted to realize the recognition and detection of vehicle targets, and the training model is tested and optimized in the actual environment to finally meet the effect of actual use, with a processing speed of 4 frames per second on average. The experimental results show that on the platform with weak computing power like raspberry PI, the algorithm can be accelerated by VPU modules like Movidius neuron computing stick, and the computing cost can be greatly reduced when it is in actual use.

    参考文献
    [1] 许洁琼. 基于视频图像处理的车辆检测与跟踪方法研究[博士学位论文]. 青岛: 中国海洋大学, 2012.
    [2] Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA. 2005.886-893.
    [3] Lowe DG. Object recognition from local scale-invariant features. Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece. 1999. 1150-1157.
    [4] 张学工. 关于统计学习理论与支持向量机. 自动化学报, 2000, 26(1): 32-42
    [5] Viola P, Jones MJ. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137-154. [doi: 10.1023/B:VISI.0000013087.49260.fb
    [6] Gupta S, Girshick R, Arbeláez P, et al. Learning rich features from rgb-d images for object detection and segmentation. Proceedings of the 13th European Conference on Computer Vision - ECCV 2014. Zurich, Switzerland. 2014. 345-360.
    [7] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014.580-587.
    [8] Girshick R. Fast R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015.1440-1448.
    [9] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [doi: 10.1109/TPAMI.2016.2577031
    [10] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 779-788.
    [11] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot MultiBox detector. Proceedings of the 14th Euaropean Conference on Computer Vision. Amsterdam, the Netherlands. 2016. 21-37.
    [12] 李龙棋, 方美发, 唐晓腾. 树莓派平台下的实时监控系统开发. 闽江学院学报, 2014, 35(5): 67-72. [doi: 10.3969/j.issn.1009-7821.2014.05.014
    [13] Ionica MH, Gregg D. The movidius myriad architecture's potential for scientific computing. IEEE Micro, 2015, 35(1): 6-14. [doi: 10.1109/MM.2015.4
    [14] Vinyals O, Toshev A, Bengio S, et al. Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 652-663. [doi: 10.1109/TPAMI.2016.2587640
    [15] Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA. 2014. 1-9.
    [16] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014.
    [17] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. 2015. 770-778.
    [18] Howard AG, Zhu ML, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv: 1704.04861, 2017.
    [19] 张洋硕, 苗壮, 王家宝, 等. 基于Movidius神经计算棒的行人检测方法. 计算机应用, 2019, 39(8): 2230-2234. [doi: 10.11772/j.issn.1001-9081.2018122595
    [20] 吴广伟. 基于移动终端的轻量级卷积神经网络研究与实现[硕士学位论文]. 西安: 西安电子科技大学, 2018.
    [21] Abadi M, Agarwal A, Barham P, et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv: 1603.04467, 2016.
    [22] Bahrampour S, Ramakrishnan N, Schott L, et al. Comparative study of deep learning software frameworks. arXiv: 1511.06435, 2015.
    [23] Schulzrinne H, Rao A, Lanphier R. Real Time Streaming Protocol (RTSP). RFC 2326, 1998.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈璐,管霜霜,谢艳芳.基于树莓派与神经计算棒的特种车辆检测识别.计算机系统应用,2020,29(9):142-148

复制
分享
文章指标
  • 点击次数:1161
  • 下载次数: 2711
  • HTML阅读次数: 1780
  • 引用次数: 0
历史
  • 收稿日期:2019-10-04
  • 最后修改日期:2019-10-29
  • 在线发布日期: 2020-09-07
  • 出版日期: 2020-09-15
文章二维码
您是第11183081位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号