级联层叠金字塔网络模型的服装关键点检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61572401,61672426,61701400);西安工程大学博士科研启动基金(BS1330)


Cascaded Stacked Pyramid Network Model for Key Point Detection of Clothing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    服装关键点的检测对服饰分类、推荐和检索效果具有重要的作用,然而实际服装数据库中存在大量形变及背景复杂的服饰图片,导致现有服装分类模型的识别率和服装推荐、检索的效果较差.为此,本文提出了一种级联层叠金字塔网络模型CSPN (Cascaded Stacked Pyramid Network),将目标检测方法与回归方法相结合,首先采用Faster R-CNN结构对服装目标区域进行识别,然后基于ResNet-101结构生成的多层级特征图,构建级联金字塔网络,融合服饰图像的多尺度高低层信息,解决图片形变及复杂背景下服装关键点识别准确度不高等问题.实验结果表明,CSPN模型在DeepFashion数据集上较其他三种模型对服装关键点具有较高识别度.

    Abstract:

    The detection of key points of clothing plays an important role in the classification, recommendation, and retrieval of clothing. However, there are a large number of clothing pictures with deformation and complex background in the clothing database, which leads to the poor recognition rate of the existing clothing classification model and the effect of clothing recommendation and retrieval. For this reason, this study proposes a model called Cascaded Stacked Pyramid Network (CSPN) which combines the target detection method with the regression method. First, the costume target area is identified by the Faster R-CNN, and then the Cascaded Pyramid Network (CPN) is constructed based on the multi-level feature map generated by ResNet-101 structure. This model integrates the multi-scale and different-layer clothing image feature, and solves low image recognition accuracy about clothing key points of the deformation and complex background image. Experimental results show that the CSPN model has higher recognition rate on the key points of clothing than the other three models in the DeepFashion dataset.

    参考文献
    相似文献
    引证文献
引用本文

李维乾,张紫云,王海,张艺.级联层叠金字塔网络模型的服装关键点检测.计算机系统应用,2020,29(4):254-259

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-07
  • 最后修改日期:2019-10-08
  • 录用日期:
  • 在线发布日期: 2020-04-09
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号