基于深度学习的齿轮视觉微小缺陷检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中央引导地方科技发展专项(2017L3009)


Visual Detection of Minor Gear Defect Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对齿轮视觉微小缺陷,采用一种基于深度学习算法的Mask R-CNN网络进行检测,并对网络进行相应地优化调整.首先,通过比较5种残差神经网络检测效果,选择resnet-101作为图像共享特征提取网络.然后,剔除特征金子塔网络中对特征图P5进行的不合理的3×3卷积,缺齿检出率指标相应得到提升.最后,为了对候选区域网络进行有效的训练,根据设计的样本标注方案中小范围波动的标注尺寸,设置合适的anchors大小以及宽高比.最终,经过优化的Mask R-CNN网络达到了98.2%缺齿检出率.

    Abstract:

    The optimized Mask R-CNN network based on deep learning is used to visual detection of the tiny defects on gears. Firstly, by comparing the detection effects of five kinds of residual neural network, resnet-101 is selected as the image sharing feature extraction network. Then, the detection rate for missing tooth is correspondingly improved by eliminating the unreasonable 3×3 convolution of feature map P5 in the feature pyramid network. Finally, in order to effectively train the region proposal network, the appropriate anchor size and aspect ratio are set according to small fluctuation of annotation box in the designed sample labeling scheme. The optimized Mask R-CNN network eventually achieved 98.2% detection rate for missing tooth on gears.

    参考文献
    相似文献
    引证文献
引用本文

韩明,吴庆祥,曾雄军.基于深度学习的齿轮视觉微小缺陷检测.计算机系统应用,2020,29(3):100-107

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-06
  • 最后修改日期:2019-09-05
  • 录用日期:
  • 在线发布日期: 2020-03-02
  • 出版日期: 2020-03-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号