基于生成对抗网络的跨视角步态特征提取
作者:

Cross-View Gait Feature Extraction Using Generative Adversarial Networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    步态是一种能够在远距离、非侵犯的条件下识别身份的生物特征,但在实际场景中,步态很容易受到拍摄视角、行走环境、物体遮挡、着装等因素的影响.在跨视角识别问题上,现有方法只注重将多种视角的步态模板转化到固定视角下,且视角跨度的增大加深了错误的累积.为了提取有效的步态特征用于跨视角步态识别,本文提出了一种基于生成对抗网络的跨视角步态特征提取方法,该方法只需训练一个模型即可将步态模板转换到任意视角下的正常行走状态,并最大化地保留原本的身份特征信息,从而提高步态识别的准确率.在CASIA-B和OUMVLP数据集上的实验结果表明,该方法在解决跨视角步态识别问题上具有一定的鲁棒性和可行性.

    Abstract:

    Gait is a biological feature that can recognize identity at a long distance and without invasion. However, the performance of gait recognition can be adversely affected by many factors such as view angle, walking environment, occlusion, and clothing, among others. For cross-view gait recognition, the existing cross-view methods focus on transforming gait templates to a specific view angle, which may accumulate the transformation error in a large variation of view angles. To extract invariant gait features, we propose a method which is based on generative adversarial networks. In the proposed method, a gait template could be transformed to any view angle and normal walking state by training only one model. At the same time, the method maintain effective identity information to the most extent and improving the accuracy of gait recognition. Experiments on CASIA-B and OUMVLP datasets indicate that compared with several published approaches, the proposed method achieves competitive performance and is more robust and interpretable to cross-view gait recognition.

    参考文献
    [1] 何逸炜, 张军平. 步态识别的深度学习:综述. 模式识别与人工智能, 2018, 31(5):442-452
    [2] Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada. 2014. 2672-2680.
    [3] Shiraga K, Makihara Y, Muramatsu D, et al. GEINet:View-invariant gait recognition using a convolutional neural network. Proceedings of 2016 International Conference on Biometrics. Halmstad, Sweden. 2016. 1-8.
    [4] Wu ZF, Huang YZ, Wang L, et al. A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2):209-226. doi:10.1109/TPAMI.2016.2545669
    [5] Liao RJ, Cao CS, Garcia EB, et al. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations. Proceedings of the 12th Chinese Conference on Biometric Recognition. Shenzhen, China. 2017. 474-483.
    [6] Feng Y, Li YC, Luo JB. Learning effective gait features using LSTM. Proceedings of the 2016 23rd International Conference on Pattern Recognition. Cancun, Mexico. 2016. 325-330.
    [7] Makihara Y, Sagawa R, Mukaigawa Y, et al. Gait recognition using a view transformation model in the frequency domain. Proceedings of the 9th European Conference on Computer Vision. Graz, Austria. 2006. 151-163.
    [8] Zheng S, Zhang JG, Huang KQ, et al. Robust view transformation model for gait recognition. Proceedings of the 2011 18th IEEE International Conference on Image Processing. Brussels, Belgium. 2011. 2073-2076.
    [9] Bashir K, Xiang T, Gong SG. Cross-view gait recognition using correlation strength. Proceedings of 2010 British Machine Vision Conference. London, UK. 2010. 1-11.
    [10] Yu SQ, Wang Q, Shen LL, et al. View invariant gait recognition using only one uniform model. Proceedings of the 2016 23rd International Conference on Pattern Recognition. Cancun, Mexico. 2016. 889-894.
    [11] Choi Y, Choi M, Kim M, et al. StarGAN:Unified generative adversarial networks for multi-domain image-to-image translation. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. 2018. 8789-8797.
    [12] Yu SQ, Chen HF, Reyes EBG, et al. GaitGAN:Invariant gait feature extraction using generative adversarial networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA. 2017. 532-539.
    [13] He YW, Zhang JP, Shan HM, et al. Multi-task GANs for view-specific feature learning in gait recognition. IEEE Transactions on Information Forensics and Security, 2019, 14(1):102-113. doi:10.1109/TIFS.2018.2844819
    [14] Han J, Bhanu B. Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2):316-322. doi:10.1109/TPAMI.2006.38
    [15] Yu SQ, Tan DL, Tan TN. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China. 2006. 441-444.
    [16] Takemura N, Makihara Y, Muramatsu D, et al. Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Transactions on Computer Vision and Applications, 2018, 10(1):4. doi:10.1186/s41074-018-0039-6
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

秦月红,王敏.基于生成对抗网络的跨视角步态特征提取.计算机系统应用,2020,29(1):164-170

复制
分享
文章指标
  • 点击次数:1926
  • 下载次数: 3466
  • HTML阅读次数: 2285
  • 引用次数: 0
历史
  • 收稿日期:2019-06-25
  • 最后修改日期:2019-07-16
  • 在线发布日期: 2019-12-30
  • 出版日期: 2020-01-15
文章二维码
您是第11183081位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号