基于DE-YOLO的室内人员检测方法
作者:
基金项目:

福建省自然科学基金(2017J01744)


Indoor Personnels Detection Method Based on DE-YOLO
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目标检测的一个重要应用场景是对室内流动人员的检测与定位,为了降低模型的冗余度和提高检测的精确度,因此本文提出一种基于DE-YOLO的室内人员检测方法.通过使用K-means算法对数据集进行聚类,并设计出这种DE-YOLO深度卷积神经网络结构.通过DE-YOLO网络结构中的密集型连接,实现模型大小的压缩和特征信息的复用,最后对提取到的特征进行目标检测.在VOC2012数据集上进行实验表明,新改进的深度卷积网络应用性能有较大的提升.

    Abstract:

    An important application scenario for target detection is the detection and location of indoor mobile personnel. In this study, we propose an indoor personnel detection method to improve YOLOv3. First, the proposed method clusters the dataset by using K-means algorithm and designs a DE-YOLO deep convolutional neural network structure. Through the dense connection in the DE-YOLO network structure, the compression of the model sizes and the reuse of the feature information are realized. Finally, the target detection is performed on the extracted features. Experiments show that the application of the newly improved deep convolutional network has greatly improved application effect on VOC2012 datasets.

    参考文献
    [1] Ren SQ, He KM, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks. arXiv:1506.01497, 2016.
    [2] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot MultiBox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands. 2016. 21-37.
    [3] 焦李成, 赵进, 杨淑媛, 等. 深度学习、优化与识别. 北京:清华大学出版社, 2017. 341-342.
    [4] Redmon J, Farhadi A. YOLO9000:Better, faster, stronger. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2016. 6517-6525.
    [5] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 779-788.
    [6] Redmon J, Farhadi A. YOLOv3:An incremental improvement. arXiv:1804.02767, 2018.
    [7] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [8] Huang G, Liu Z, Vab Der Maaten L, et al. Densely connected convolutional networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 2261-2269.
    [9] Coates A, Ng AY. Learning feature representations with K-means. in:Montavon G, Orr GB, Müller KR, eds. Neural Networks:Tricks of the Trade. 2nd ed. Berlin, Heidelberg:Springer, 2012. 561-580.
    [10] 郑志强, 刘妍妍, 潘长城, 等. 改进YOLO v3遥感图像飞机识别应用. 电光与控制, 2019, 26(4):28-32
    [11] 魏杰. 基于K-means聚类算法改进算法的研究. 信息与通信, 2018, (5):14-15
    [12] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 580-583.
    [13] PASCAL VOC Challenge performance evaluation and download server. http://host.robots.ox.ac.uk:8080/leaderboard/main_bootstrap.php.
    [14] 陈颖熙, 廖晓东, 苏例月, 等. 基于GDBN网络的文本情感倾向分类算法. 计算机系统应用, 2019, 28(1):163-168. doi:10.15888/j.cnki.csa.006723
    [15] 何长婷. 课堂签到系统中的人脸识别方法研究与实现[硕士学位论文]. 合肥:中国科学技术大学, 2018. 46-48.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张明伟,蔡坚勇,李科,程玉,曾远强.基于DE-YOLO的室内人员检测方法.计算机系统应用,2020,29(1):203-208

复制
分享
文章指标
  • 点击次数:1976
  • 下载次数: 2249
  • HTML阅读次数: 1630
  • 引用次数: 0
历史
  • 收稿日期:2019-06-27
  • 最后修改日期:2019-07-16
  • 在线发布日期: 2019-12-30
  • 出版日期: 2020-01-15
文章二维码
您是第10648109位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号