基于集成模型的移动应用广告转化率预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61379109)


Model Ensemble for Conversion Rate Prediction in Moblie App Adevertising
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    移动应用广告是互联网广告市场中一种主动的广告形式,它能够分析用户的兴趣爱好,并投其所好,精准投放广告,从而提高用户体验,为广告平台与广告主带来巨大的收益.因此,预测移动应用广告的转化率已成为一个非常重要的研究方向.本文以逻辑回归和两个梯度提升树模型为基础,使用堆叠和平均的集成思想,提出了两种集成模型--SXL和BLLX模型,解决了传统预测模型能力有限,无法精准预测转化率的问题.在腾讯2017社交广告比赛的数据集上的实验结果表明,SXL和BLLX两种模型能够有效地提高广告转化率的预测结果.

    Abstract:

    Mobile app advertising is a kind of initiative advertising in the Internet advertising market. It can analyze users' interests and hobbies to target their interest advertisements, and then it improves their experience and brings huge benefits to advertising platforms and advertisers. Therefore, predicting the conversion rate of mobile app ads has become a significant research direction. Based on logistic regression and two gradient boosting tree models, this study proposes two integration models, SXL and BLLX, using the idea of stacking and averaging. It solves the problem that traditional prediction models have limited capabilities and cannot accurately predict the conversion rate. The experimental results on the dataset of Tencent 2017 social advertising competition show that the SXL and BLLX can effectively improve the prediction results of advertising conversion rate.

    参考文献
    相似文献
    引证文献
引用本文

彭赞,郑瑾,何鸿业.基于集成模型的移动应用广告转化率预测.计算机系统应用,2019,28(11):245-252

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-29
  • 最后修改日期:2019-04-18
  • 录用日期:
  • 在线发布日期: 2019-11-08
  • 出版日期: 2019-11-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号