基于Hadoop的GA-BP算法在降水预测中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Application of GA-BP Algorithm Based on Hadoop in Precipitation Forecast
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对如何从海量的气象数据中挖掘出有用的知识,并提高气象预报的准确度,提出了在Hadoop平台上构建基于遗传神经网络算法的天气预报方法.该方法采用遗传算法与神经网络算法相结合,避免了传统算法容易陷入局部最优的问题,并以天津市13个台站1951–2006年的地面气候资料日值数据为基础,建立了遗传神经网络预测模型,最后以降雨量等级为决策属性进行了实验.结果表明,该方法对所有降水等级的预测准确率都要优于传统的神经网络算法,对于降水等级R0的预测精度最高,达到了87%,不仅可以有效的处理海量气象数据,同时具有较高的预测精准度和良好的扩展性,为天气预报提拱了一种全新的思路和方法.

    Abstract:

    Aiming at how to dig out useful knowledge from the massive meteorological data and improve the accuracy of meteorological forecast, this paper proposed a weather forecast method based on the genetic neural network algorithm on Hadoop platform. The method combined genetic algorithm with neural network algorithm, which could avoid the problem of local optimization in traditional algorithm. Then, the genetic neural network forecasting model is established, and the daily data of the ground climate from 1951 to 2006 of 13 stations in Tianjin is used as experimental data. Finally, the experiment is performed taking the rainfall level as decision attribute, and the results show that the method proposed in this paper can get better prediction accuracy for all rainfall level than traditional neural network algorithm. It has the highest prediction precision for the rainfall level R0 and reaches 87%, which can not only effectively deal with mass meteorological data, but also has high prediction precision and good scalability, it proposes a new way of thinking and method for weather forecast.

    参考文献
    相似文献
    引证文献
引用本文

勾志竟,任建玲,徐梅,王敏.基于Hadoop的GA-BP算法在降水预测中的应用.计算机系统应用,2019,28(9):140-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-10
  • 最后修改日期:2019-04-04
  • 录用日期:
  • 在线发布日期: 2019-09-09
  • 出版日期: 2019-09-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号