基于目标检测算法的FashionAI服装属性识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


FashionAI Clothes Recognition Based on Object Detection Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着网络上服装图片数量的快速增长,对于大量的服装进行分类的需求与日俱增.传统的使用手工进行服装图像的语义属性标注并不能完全的表达服装图像中的丰富信息,并且传统的手工设计的特征已经不能满足现实的精度和速度的需求.近年来,深度学习已经应用到计算机视觉方方面面,为基于深度学习的服装分类识别技术奠定了坚实的基础.本文根据已有的数据集DeepFashion构建了三个新的子数据集,进行分类训练的deepfashionkid数据集和进行Faster R-CNN训练的deepfashionVoc数据集和进行Mask R-CNN训练的deepfashionMask数据集.使用deepfashionkid数据集在VGG16上进行预训练得到clothNet模型,进而改进Faster R-CNN的损失函数.并且各自对比了这两种算法使用clothNet预训练的模型与不使用的区别.另外,本文了采用一种新的类似嫁接学习的预训练策略.实验表明,这些训练技巧对于检测精度的提高具有一定的帮助.

    Abstract:

    With the rapid growth in the number of clothing pictures on the Internet, the demand for classification of a large number of clothing is increasing. The traditional use of manual semantic attribute annotation of clothing images does not fully express the rich information in the clothing image, and the traditional hand-designed features can no longer meet the requirements of real precision and speed. In recent years, deep learning has been applied to all aspects of computer vision, laying a solid foundation for clothing classification and recognition technology based on deep learning. In this study, three new sub-datasets are constructed according to the existing dataset deepfashion, the deepfashionkid dataset for classification training, the deepfashionVoc dataset for training with Faster R-CNN, and the deepfashionMask dataset for Mask R-CNN training. The clothNet model is pre-trained on the VGG16 using the deepfashionkid dataset to obtain the clothNet model, which in turn improves the loss function of the Faster R-CNN. And each compares the difference between the two algorithms using clothNet pre-trained model and not used. In addition, this study adopts a new pre-training strategy to adopt a training method similar to grafting learning. Experiments show that these training techniques are helpful for improving the detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

陈亚亚,孟朝晖.基于目标检测算法的FashionAI服装属性识别.计算机系统应用,2019,28(8):170-175

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-30
  • 最后修改日期:2019-02-21
  • 录用日期:
  • 在线发布日期: 2019-08-14
  • 出版日期: 2019-08-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号