基于Spark的改进蚁群算法对带时间窗车辆路径问题的求解
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Solving Vehicle Routing Problem with Time Window Based on Spark's Improved Ant Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为应对大数据时代对带时间窗车辆路径问题(VRPTW)的实时求解要求,提出基于Spark平台的改进蚁群算法.在算法层面,利用改进的状态转移规则和轮盘赌选择机制构建初始解,结合k-opt邻域搜索进行路径构建优化,改进最大最小蚁群算法中的信息素更新策略;在实现层面,利用Spark提供的API对蚁群RDD进行操作,实现蚁群分布式并行求解.在标准算例Solomon benchmark和Gehring&Homberger benchmark的实验结果表明,该算法在大规模问题的求解精度和速度上有明显提升.

    Abstract:

    In order to cope with the real-time solution requirements of the Vehicle Routing Problem with Time Window (VRPTW) in the era of big data, this study proposed an improved parallel ant colony algorithm based on Spark platform. At the algorithm level, the improved state transition rule and roulette selection mechanism are used to construct the initial solution, and the k-opt local search is used to optimize the path construction. In addition, the improved pheromone update strategy of max-min ant colony algorithm is applied. At the implement level, the ant colony is encapsulated into RDD, which is operated by Spark API to realize distributed construction solution. The experimental results of the Solomon benchmark and Gehring & Homberger benchmark show that the proposed algorithm can improve the accuracy and speed of large-scale problems.

    参考文献
    相似文献
    引证文献
引用本文

李奕颖,秦刚.基于Spark的改进蚁群算法对带时间窗车辆路径问题的求解.计算机系统应用,2019,28(7):9-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-10
  • 最后修改日期:2019-02-03
  • 录用日期:
  • 在线发布日期: 2019-07-05
  • 出版日期: 2019-07-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号