广播机制解决Shuffle过程数据倾斜的方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Method Research to Solve Shuffle Data Skew Based on Broadcast
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在Spark计算平台中,数据倾斜往往导致某些节点承受更大的网络流量和计算压力,给集群的CPU、内存、磁盘和流量带来了巨大的负担,影响整个集群的计算性能.本文通过对Spark Shuffle设计和算法实现的研究,深入分析在大规模分布式环境下发生数据倾斜的本质原因.提出了广播机制避免Shuffle过程数据倾斜的方法,分析了广播变量分发逻辑过程,给出广播变量性能优势分析和该方法的算法实现.通过Broadcast Join实验验证了该方法在性能上有稳定的提升.

    Abstract:

    In the Spark computing platform, data skew often causes some nodes to withstand greater network traffic and computing pressure, which imposes a huge burden on the cluster's CPU, memory, disk, and traffic, affecting the computing performance of the entire cluster. Through the research on Spark Shuffle design and algorithm implementation, and deep analyses on the essential reasons of data skew in large-scale distributed environment, this study proposes a method to avoid data skew in shuffle process through the broadcast mechanism, analyzes the process of broadcast variable distribution logic, and gives the algorithm implementation and performance advantage analysis of the method. The performance of the method is improved by the Broadcast Join experiment.

    参考文献
    相似文献
    引证文献
引用本文

吴恩慈.广播机制解决Shuffle过程数据倾斜的方法.计算机系统应用,2019,28(6):189-197

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-19
  • 最后修改日期:2019-01-15
  • 录用日期:
  • 在线发布日期: 2019-05-28
  • 出版日期: 2019-06-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号