抗环境音干扰的设备声音故障监测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Device Sound Fault Monitoring Method of Anti-Environmental Sound Interference
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    变压器等大型设备在运行过程中发声具有辨识性和平稳性的特点,但容易受各种环境音的干扰,针对该问题,本文利用声音信号处理、特征提取、模式匹配等技术,提出了一种抗多种环境音干扰的设备声音故障监测方案.首先对在各种环境声音中变压器的正常和故障声音进行采集和预处理,然后对其提取出MFCC特征并降维,对变压器正常工作声音特征通过OPTICS算法进行训练,得到一个具有多个分类的标准集,最后将标准集与包含故障声音的测试样本进行匹配,若出现不匹配情况但经人工检验为误报,则将其归为新的分类.实验结果表明:该方法不仅能很好的识别样本,也能在新的正常声音出现时通过标准集增强模块来优化标准集,从而提高识别准确率并降低误警率.

    Abstract:

    Large equipment such as transformers has the characteristics of identification and stability during operation, but it is easily interfered by various environmental sounds. To solve this problem, by using sound signal processing, feature extraction, pattern matching, and other techniques, this study proposes a device sound fault monitoring scheme that is resistant to multiple environmental sound disturbances. First of all, the normal and faulty sounds of transformers in various ambient sounds are collected and preprocessed. Then, MFCC features are extracted and dimensionality is reduced. Next, the normal working sound characteristics of the transformer are trained through the OPTICS algorithm to obtain a standard set with multiple clusters. Last, the standard set is matched with the test sample containing the faulty sound. If there is a mismatch, but the manual test is a false positive, it will be classified as a new cluster. The experimental results show that the proposed method can not only identify the sample well, but also optimize the standard set through the standard set enhancement module when the new normal sound appears, thus improving the recognition accuracy and reducing the false alarm rate.

    参考文献
    相似文献
    引证文献
引用本文

李兰村,廉东本,毛立爽.抗环境音干扰的设备声音故障监测方法.计算机系统应用,2019,28(6):89-94

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-10
  • 最后修改日期:2018-12-29
  • 录用日期:
  • 在线发布日期: 2019-05-28
  • 出版日期: 2019-06-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号