基于交叉验证网格寻优支持向量机的产品销售预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51506125)


Product Sale Forecast Based on Support Vector Machine Optimized by Cross Validation and Grid Search
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    综合考虑影响汽车销售的多种因素,运用交叉验证网格搜索优化支持向量机的惩罚系数和核函数参数,建立了适合汽车销售的预测模型.仿真实验结果表明,改进支持向量机优化汽车销售预测模型的预测效果比某公司当前采用的模型更佳,该模型具有较高的预测精度和较大的可信度,可为企业决策层提供较为准确的销售预测参考.

    Abstract:

    Considering various factors affecting automobile sales, the penalty coefficient and kernel function parameters of support vector machine are optimized by cross validation and grid search, and a prediction model suitable for automobile sales is established. The simulation results show that the forecasting effect of the improved support vector machine optimized automobile sales forecasting model is better than that of the current model adopted by a company. The model has higher forecasting accuracy and greater credibility, and can provide more accurate sales forecasting reference for enterprise decision-making level.

    参考文献
    相似文献
    引证文献
引用本文

张文雅,范雨强,韩华,张斌,崔晓钰.基于交叉验证网格寻优支持向量机的产品销售预测.计算机系统应用,2019,28(5):1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-28
  • 最后修改日期:2018-12-18
  • 录用日期:
  • 在线发布日期: 2019-05-05
  • 出版日期: 2019-05-15
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号