基于FTRL和XGBoost算法的产品故障预测模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Product Fault Prediction Model Based on FTRL and XGBoost Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着智能化设备的日益更新和计算机储存数据能力的提升,制造业企业在其产品制造过程中产生了大量的流水线数据,如何充分利用这些数据一直是工业界的一个难题.本文根据制造业企业的真实大规模生产数据,通过对其进行细致的探索性数据分析,建立了一种基于FTRL和XGBoost算法的二分类产品故障预测模型,并根据适用于非平衡数据集的MCC (Matthews Correlation Coefficient)评价指标采用交叉验证方法对其进行优化.实验结果表明,该模型对于大规模(不仅样本量大,特征量也很大)正负样本非平衡的生产流水线数据集具有运行效率高,故障预测精度高的效果.基于此模型我们可以构建更智能的产品故障检测系统,有效降低企业运营成本的同时也带来了可观的利润增长.

    Abstract:

    With the update of intelligent equipment and the improvement of data storage capacity, manufacturing companies have achieved a large amount of pipeline data in the manufacturing process of their products. How to utilize these data has always been a difficult problem in the industry. Depending on the actual production data of manufacturing enterprises, this study establishes a product failure identification model based on FTRL (with Logistic Regression) and XGBoost algorithms through detailed exploratory data analysis, then uses cross-validation methods to optimize it according to MCC metric which is suitable for unbalanced datasets. The experimental results show that the model has a high efficiency and high accuracy of fault prediction for large-scale (not only large sample size but also large feature quantity) unbalanced production pipeline datasets. Based on this model, we can build a smarter product fault detection system, which effectively reduces the operating costs of the enterprise and also spurs profit growth.

    参考文献
    相似文献
    引证文献
引用本文

杨正森.基于FTRL和XGBoost算法的产品故障预测模型.计算机系统应用,2019,28(3):179-184

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-09-12
  • 最后修改日期:2018-10-08
  • 录用日期:
  • 在线发布日期: 2019-02-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号