利用学习向量化样本分类的在线学习成绩预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61375122);广东省创新强校特色创新类项目(201712009QX);广东省教育厅教育改革项目(201771002);北京师范大学珠海分校创新强校科研项目(201771002)


Method of Using Learning Vector Classification Samples to Predict Online Achievements
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对网络在线学习者产生的数据进行记录和分析,并为其提供精准化的个性化服务是在线教育发展的重要方面.本文以学习者在平台上产生的日常学习数据为样本,综合其最具代表性的五种影响因子,通过学习向量化神经网络对样本进行分类,得到基于BP神经网络的在线学习成绩预测数据.在模型中采用遗传算法有效优化BP神经网络的权重和阈值,在提高预测精度的同时加快模型的收敛速度.最后与其他两种模型进行对比分析,结果表明:该模型进行预测的结果与真实的成绩分布基本一致,具有很高的可信度,能够为有效的预测学习状态提供决策依据,具有一定的工程应用价值.

    Abstract:

    Recording and analyzing the data generated by online learners on the Internet and providing accurate and personalized services is an important aspect of online education. This study takes the daily learning data generated by learners on the teaching platform as a sample, synthesizes its five most representative influencing factors, classifies samples by Learning Vector Quantization (LVQ) neural network, and obtains online learning academic performance prediction data based on BP network. The genetic algorithm is used in the model to effectively optimize the weights and thresholds of the BP network, which accelerates the convergence of the model while improving the prediction accuracy. Finally, compared with the other two models, the results show that the model's prediction results are basically consistent with the real performance distribution. It has a high degree of credibility and provide a decision-making basis for effective prediction of learning status, which has certain value in engineering application.

    参考文献
    相似文献
    引证文献
引用本文

郎波,樊一娜.利用学习向量化样本分类的在线学习成绩预测.计算机系统应用,2019,28(3):215-222

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-09-02
  • 最后修改日期:2018-09-27
  • 录用日期:
  • 在线发布日期: 2019-02-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号