基于改进FOA算法的上市公司Z-Score模型财务预警
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年科学资金(11601419)


Z-Score Model Financial Prediction for Listed Companies Based on Improved FOA Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高传统Z-Score财务预警模型的预警能力,本文将改进FOA算法的良好寻优能力和Z-Score财务预警模型相结合,提出了一种改进FOA算法的上市公司Z-Score财务预警模型.采用改进FOA算法来优化Z-Score模型的参数,降低预测值和目标值之间的均方根误差(RMSE).经对选取上市公司财务数据的预测值和目标值对比,且检验其准确率.实验结果:传统的Z-Score模型、基本FOA算法优化Z-Score模型和改进FOA算法优化Z-Score模型的预测准确率分别为65%、70%和80%.实验表明改进的算法较大提升了Z-Score财务预警模型的预测能力,也表明了该算法的有效性.

    Abstract:

    In order to improve the prediction ability of the traditional Z-Score financial prediction model, this paper proposes a financial prediction model of Z-Score for listed companies based on improved Fruit fly Optimization Algorithm (FOA) by combining the good searching ability of improved FOA algorithm and the Z-Score financial prediction model. The Root Mean Square Error (RMSE) between the predicted value and target value is reduced by improved FOA algorithm being applied to optimize the parameters of Z-Score model. We compare the predicted value and target value of the financial data of listed companies to test the accuracy of financial prediction. The experimental results are as follows:accuracies of the traditional Z-Score financial prediction model, FOA algorithm optimized Z-Score model, and improved FOA algorithm optimized Z-Score model are 65%, 70%, and 80%, respectively. Experiments show that the improved algorithm significantly improves the predictive ability of Z-Score financial prediction model, it is also illustrated the validity of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

康彩红,王秋萍,肖燕婷.基于改进FOA算法的上市公司Z-Score模型财务预警.计算机系统应用,2018,27(11):198-204

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-03
  • 最后修改日期:2018-04-24
  • 录用日期:
  • 在线发布日期: 2018-10-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号