基于GRU的命名实体识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Named Entity Recognition Method Based on GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    命名实体识别是自然语言处理中的一项基础任务,传统的识别方法往往需要外部知识和人工筛选特征,需要较高的人力成本和时间成本;针对传统方法的局限性,提出一种基于GRU (Gated Recurrent Unit)的命名实体识别模型,该模型以字向量作为输入单位,通过双向GRU层提取特征,并通过输出层得到标签序列.在传统命名实体和会议名称这种特定领域命名实体上对该模型进行了测试.实验结果表明,本文设计的循环神经网络模型能有效的识别命名实体,省去了人工设计特征的繁琐工作,提供了一种端到端的识别方法.

    Abstract:

    Named entity recognition is a basic task of natural language processing. Traditional recognition methods often require external knowledge and manual screening features, which require high labor costs and time costs. Aiming at the limitation of traditional methods, this study proposes a named entity recognition model based on GRU (Gated Recurrent Unit). This model uses word vector as input unit, extracts features through bi-directional GRU layer, and obtains label sequence through output layer. In this study, this model has been tested on a specific domain named entity. The experimental results show that the recurrent neural network model of the article can identify the named entities well, and can save the tedious work of designing the features manually and provide the end-to-end identification method.

    参考文献
    相似文献
    引证文献
引用本文

王洁,张瑞东,吴晨生.基于GRU的命名实体识别方法.计算机系统应用,2018,27(9):18-24

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-10
  • 最后修改日期:2018-01-31
  • 录用日期:
  • 在线发布日期: 2018-07-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号