基于认知诊断的协同过滤试题推荐
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Collaborative Filtering Algorithm Based on Cognitive Diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对协同过滤忽略了学习者的知识点掌握情况(学习状态),对个性化教育试题推荐中运用的协同过滤算法进行了一定改进研究,该推荐算法分为三个步骤:(1)结合认知诊断模型,对学习者所练习题目中反映的知识点掌握情况进行建模分析;(2)利用协同过滤算法,结合学习者的知识点掌握情况,来对学习者的表现情况进行相似度分析;(3)根据相似用户的历史行为数据和目标用户的知识点掌握状态,针对学习者的近邻用户进行试题推荐.该推荐办法借鉴了群体相似学习者的共性,也考虑到了个体学习者的独特性,结合二者来对学习者进行个性化试题推荐,保证了试题推荐的准确性和性能,在个性化教育系统中,结合认知诊断改进了原有的协同过滤算法来对试题做出推荐.

    Abstract:

    In view of the problem that the collaborative filtering algorithm ignores the learners' knowledge domain (learning state), this study improves the collaborative filtering algorithm used in the recommendation of personalized education. The recommendation algorithm is divided into three steps. (1) Based on cognitive diagnosis model, the study builds up a model construction analysis of the learner's knowledge domain based on learner's response matrix. (2) It Uses the collaborative filtering algorithm, combined with the knowledge domain of the target learners to analyze the learners with similar behaviors. (3) According to the similar learner's historical behaviors and the target learner's knowledge domain, the system would recommend testing questions (items) for the target learners. This recommendation method not only draws lessons from the generality of the similar learners of the same group, but also takes into account the uniqueness of the individual learners. The study combines the two to recommend the individualized items for the target learners, which ensures the accuracy and performance of the recommendation method. In the individualized education system, the recommendation method combined with cognitive diagnosis and collaborative filtering algorithm is an improved application.

    参考文献
    相似文献
    引证文献
引用本文

单瑞婷,罗益承,孙翼.基于认知诊断的协同过滤试题推荐.计算机系统应用,2018,27(3):136-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-08
  • 最后修改日期:2017-06-27
  • 录用日期:
  • 在线发布日期: 2018-02-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号