混合卷积神经网络的人脸验证
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61100139);湖南省教育厅青年项目(16B258);湖南省自然科学基金(2017JJ2252)


Face Verification of Mixed Convolutional Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人脸验证对于个人身份认证很重要,它在系统安全和犯罪识别中具有重要意义. 人脸验证的任务是给定一对人脸图像判断是否为相同的身份(即二进制分类). 传统的验证方法包括两个步骤:特征提取和人脸验证. 提出了一个混合卷积神经网络,用于进行人脸验证,主要过程分为三个步骤:特征提取,特征选择和人脸验证. 这个模型关键点是直接使用混合卷积神经网络从原始像素直接学习相关的视觉特征,并通过单变量特征选择和主成分分析(PCA)进一步处理特征. 这样可以实现从原始像素提取到具有较好鲁棒性和表达性的特征. 在顶层使用支持向量机(SVM)判读是否为同一个人. 通过实验可以发现混合卷积神经网络模型与传统方法相比在人脸验证得准确率上有着较好的表现.

    Abstract:

    Face verification is important for personal identity authentication, which is significant in system security and criminal identification. Face verification task is to give a pair of face images to determine whether they are of the same identity (i.e. binary classification). The traditional authentication method consists of two steps: feature extraction and face verification. In this study, a hybrid convolutional neural network (HBCNN) is proposed for face verification. The main process is divided into three steps: feature extraction, feature selection, and face verification. The key point of this model is to directly use the mixed convolutional neural network to learn the relevant visual features directly from the original pixels and to further process the features through univariate feature selection and principal component analysis (PCA). This can be achieved from the original pixel extraction to a better robustness and expression of the characteristics. The support vector machine (SVM) at the top level is used to see if it is the same person. Experiments show that the mixed convolutional neural network model has a better performance than the traditional method in verifying accuracy of face verification.

    参考文献
    相似文献
    引证文献
引用本文

郭明金,倪佳佳,陈姝.混合卷积神经网络的人脸验证.计算机系统应用,2018,27(2):24-29

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-05-08
  • 最后修改日期:2017-05-31
  • 录用日期:
  • 在线发布日期: 2018-02-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号