异构大数据网络的多维关联细粒度数据挖掘算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Multidimensional Association Fine-Grained Data Mining Algorithm for Heterogeneous Big Data Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决具有密度高、关联复杂的异构大数据网络的数据挖掘效率低下问题,基于多维关联架构,结合细粒度控制提出了数据挖掘算法.首先,在异构大数据网络存储与转发、处理的数据个性特征和差异化的基础上,给出了异构大数据网络数据定义和多维关联模型.接着,基于大数据网络多维关联初始化进程,通过大数据单位重构、维度置换、细粒度化和粒度均衡等,提出了多维关联细粒度数据挖掘算法.最后,通过与粗粒度算法、线性化结构数据挖掘算法对比了在不同网络规模和数据规模下的执行效率.实验结果表明,所提算法具有更佳的执行效率.

    Abstract:

    In order to improve the low efficiency of data mining with high density and complex heterogeneous data network, a data mining algorithm based on multi dimension association structure is proposed. Firstly, on the basis of the data personality characteristics and the differences of the data storage, forwarding and processing in the heterogeneous large data network, the data definition and multi-dimensional correlation model of the heterogeneous data network are given. Then, based on the large data network, the paper proposes a multidimensional association fine-grained data mining algorithm based on the reconstruction of the large data units, the dimension replacement, the granularity and the granularity. Finally, the efficiency of the algorithm is compared with the coarse grained algorithm and the linear structured data mining algorithm. The experimental results show that the proposed algorithm has better performance.

    参考文献
    相似文献
    引证文献
引用本文

陆江东,郑奋,戴卓臣.异构大数据网络的多维关联细粒度数据挖掘算法.计算机系统应用,2018,27(3):186-190

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-25
  • 最后修改日期:2017-05-09
  • 录用日期:
  • 在线发布日期: 2018-02-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号